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1 Introduction - Problems, Questions, Goal
In the modern financial industry, understanding user behavior is critical for driving better decision-
making. Credit card companies gather large volumes of transactional data, but much of it remains
underutilized when it comes to identifying customer patterns and predicting future actions. Our
project tackles this problem by applying behavioral segmentation and predictive modeling tech-
niques to credit card user data. The main question we aim to answer is whether meaningful user
segments can be identified, and if those patterns can help predict behaviors such as spending lev-
els or potential churn. Our goal is to turn raw data into actionable insights that can support
smarter marketing strategies, improve customer retention, and help financial institutions make
better-informed decisions.

Check out our github repository at this link https://github.com/tevinp23/Behavioral-
Segmentation-and-Predictive-Modeling-of-Credit-Card-Users.

1.1 Data Used
The dataset includes behavioral and transactional data for 8,950 anonymized credit card users
over a 12-month period. Each row represents a unique customer, and each column captures a
different aspect of their credit usage. Our dataset is from Kaggle and you can access it here
https://www.kaggle.com/datasets/arjunbhasin2013/ccdata/data.

• BALANCE and CREDIT_LIMIT provide insight into how much credit users carry versus
how much they are allowed to borrow.

• PURCHASES, ONEOFF_PURCHASES, and INSTALLMENTS_PURCHASES
break down total spending into different categories.

• PURCHASES_FREQUENCY, ONEOFF_PURCHASES_FREQUENCY, and
PURCHASES_INSTALLMENTS_FREQUENCY indicate how regularly customers
make purchases.

• CASH_ADVANCE and CASH_ADVANCE_TRX capture both the amount and fre-
quency of cash withdrawals.

• PAYMENTS and MINIMUM_PAYMENTS reflect how much customers are paying
off.

• PRC_FULL_PAYMENT shows the percentage of months in which the user paid off their
balance in full.

1



• BALANCE_FREQUENCY and CASH_ADVANCE_FREQUENCY track how
consistently users maintain a balance or rely on cash advances.

• TENURE records the number of months the customer has been on file (12 for all entries)

These variables give us a detailed view of user behavior across spending, repayment, and borrow-
ing patterns. This makes the dataset well suited for clustering users into segments and building
predictive models that can classify or forecast behavior.

[3]: import pandas as pd

df = pd.read_csv('CC GENERAL.csv')
df.head()

[3]: CUST_ID BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES \
0 C10001 40.900749 0.818182 95.40 0.00
1 C10002 3202.467416 0.909091 0.00 0.00
2 C10003 2495.148862 1.000000 773.17 773.17
3 C10004 1666.670542 0.636364 1499.00 1499.00
4 C10005 817.714335 1.000000 16.00 16.00

INSTALLMENTS_PURCHASES CASH_ADVANCE PURCHASES_FREQUENCY \
0 95.4 0.000000 0.166667
1 0.0 6442.945483 0.000000
2 0.0 0.000000 1.000000
3 0.0 205.788017 0.083333
4 0.0 0.000000 0.083333

ONEOFF_PURCHASES_FREQUENCY PURCHASES_INSTALLMENTS_FREQUENCY \
0 0.000000 0.083333
1 0.000000 0.000000
2 1.000000 0.000000
3 0.083333 0.000000
4 0.083333 0.000000

CASH_ADVANCE_FREQUENCY CASH_ADVANCE_TRX PURCHASES_TRX CREDIT_LIMIT \
0 0.000000 0 2 1000.0
1 0.250000 4 0 7000.0
2 0.000000 0 12 7500.0
3 0.083333 1 1 7500.0
4 0.000000 0 1 1200.0

PAYMENTS MINIMUM_PAYMENTS PRC_FULL_PAYMENT TENURE
0 201.802084 139.509787 0.000000 12
1 4103.032597 1072.340217 0.222222 12
2 622.066742 627.284787 0.000000 12
3 0.000000 NaN 0.000000 12
4 678.334763 244.791237 0.000000 12

2



1.2 Pre-Processing
Before building any models, we began by cleaning and preparing the dataset to ensure it was
ready for analysis. The first step was handling missing values. We identified two columns with
missing data: MINIMUM_PAYMENTS and CREDIT_LIMIT. Since CREDIT_LIMIT was one
of the variables we were interested in predicting, we chose to drop any rows where it was missing to
avoid introducing bias. For MINIMUM_PAYMENTS, we filled missing values using the column’s
median rather than the mean, because the data was right-skewed and the median is more robust
to outliers.

Next, we removed the CUST_ID column. This feature served only as a unique identifier and carried
no predictive or clustering value. Keeping it in the dataset would have introduced unnecessary noise
into our models.

To better capture customer behavior, we created two engineered features: • BAL-
ANCE_TO_LIMIT: This ratio shows how much of their available credit each user was uti-
lizing. High ratios could indicate higher credit risk or different usage habits. • PAY-
MENTS_TO_PURCHASES: This ratio compares how much a user repaid versus how much they
spent. It helps us understand repayment discipline and spending behavior.

Once the dataset was cleaned and enriched, we normalized all numerical features using Standard-
Scaler. This step ensured that features with larger numerical ranges (like BALANCE or PUR-
CHASES) would not dominate distance-based models such as K-Means clustering or skew linear
regression weights.

Finally, we split the dataset into training and testing subsets to evaluate our predictive models
in a controlled way. This preprocessing pipeline set the foundation for accurate and meaningful
modeling in the next stages of the project.

[5]: #Checking null columns
df.isnull().sum()

[5]: CUST_ID 0
BALANCE 0
BALANCE_FREQUENCY 0
PURCHASES 0
ONEOFF_PURCHASES 0
INSTALLMENTS_PURCHASES 0
CASH_ADVANCE 0
PURCHASES_FREQUENCY 0
ONEOFF_PURCHASES_FREQUENCY 0
PURCHASES_INSTALLMENTS_FREQUENCY 0
CASH_ADVANCE_FREQUENCY 0
CASH_ADVANCE_TRX 0
PURCHASES_TRX 0
CREDIT_LIMIT 1
PAYMENTS 0
MINIMUM_PAYMENTS 313
PRC_FULL_PAYMENT 0
TENURE 0
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dtype: int64

[6]: #Minimum_Payemnts is missing 313 values
#Credit_Limit is only missing one value
#Cust_ID is a float + is it uneccessary for the regression
# There is not a reasonable estimate to be made for credit limit so dropped␣

↪every row
df = df.dropna(subset=['CREDIT_LIMIT'])

[7]: #Filled the missing values of minimum payments with median value because the␣
↪data will be skewed if we don't

df['MINIMUM_PAYMENTS'] = df['MINIMUM_PAYMENTS'].fillna(df['MINIMUM_PAYMENTS'].
↪median())

[8]: df = df.drop(columns=['CUST_ID'])
df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 8949 entries, 0 to 8949
Data columns (total 17 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 BALANCE 8949 non-null float64
1 BALANCE_FREQUENCY 8949 non-null float64
2 PURCHASES 8949 non-null float64
3 ONEOFF_PURCHASES 8949 non-null float64
4 INSTALLMENTS_PURCHASES 8949 non-null float64
5 CASH_ADVANCE 8949 non-null float64
6 PURCHASES_FREQUENCY 8949 non-null float64
7 ONEOFF_PURCHASES_FREQUENCY 8949 non-null float64
8 PURCHASES_INSTALLMENTS_FREQUENCY 8949 non-null float64
9 CASH_ADVANCE_FREQUENCY 8949 non-null float64
10 CASH_ADVANCE_TRX 8949 non-null int64
11 PURCHASES_TRX 8949 non-null int64
12 CREDIT_LIMIT 8949 non-null float64
13 PAYMENTS 8949 non-null float64
14 MINIMUM_PAYMENTS 8949 non-null float64
15 PRC_FULL_PAYMENT 8949 non-null float64
16 TENURE 8949 non-null int64
dtypes: float64(14), int64(3)
memory usage: 1.2 MB

[9]: #I am going to create 2 new features (columns)
#One will show how much of the credit limit is used (this will help with␣

↪regression model)
#Other will show how much purchases will be paid back
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[10]: #Create a new column showing how much of the credit limit is used
df['BALANCE_TO_LIMIT'] = df['BALANCE'] / (df['CREDIT_LIMIT'] + 1)

[11]: #Create a new column showing how much of purchases are being paid back
df['PAYMENTS_TO_PURCHASES'] = df['PAYMENTS'] / (df['PURCHASES'] + 1)

1.3 Data Visualizations
1.3.1 Account Balance Distribution

[13]: import matplotlib.pyplot as plt

plt.figure()
plt.hist(df['BALANCE'].dropna(), bins=30, edgecolor='black')
plt.title('Distribution of Account Balances')
plt.xlabel('BALANCE')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()

The histogram of account balances is clearly right-skewed: most cardholders carry relatively low
balances (the highest bars sit under 2,500), while a long, thin tail stretches out past 10,000. In
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other words, a small number of users hold very high balances, but the bulk of the distribution is
concentrated at the lower end.

1.3.2 Balance v Credit Limit

[16]: plt.figure()
plt.scatter(df['CREDIT_LIMIT'], df['BALANCE'], alpha=0.5)
plt.title('Balance vs. Credit Limit')
plt.xlabel('CREDIT_LIMIT')
plt.ylabel('BALANCE')
plt.tight_layout()
plt.show()

The scatter plot shows a clear upward trend where users with higher credit limits generally carry
higher balances. At low limits (under 5,000), balances cluster tightly near the bottom, while as
limits rise, the spread of balances widens considerably. You can also see that some high‐limit
accounts still maintain very low balances (points along the x-axis), and conversely a few mid-limit
users carry unusually high balances, forming a loose cloud rather than a perfect line.
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2 Regression Modeling
2.1 Linear Regression
To begin our predictive modeling, we applied linear regression to explore whether we could estimate
a user’s CREDIT_LIMIT based on their behavioral and financial characteristics. Linear regression
is a supervised learning method that models the relationship between one dependent variable and
one or more independent variables by fitting a linear equation to observed data. In our case,
the goal was to determine whether spending habits, payment behavior, and usage patterns could
accurately predict how much credit a customer might be assigned.

We selected linear regression as a baseline model because it is simple, interpretable, and often
effective when the relationships between variables are linear or close to linear. By examining feature
coefficients and model performance, we hoped to gain insight into which behaviors most strongly
influence credit assignment and whether those insights could support smarter credit evaluation in
real-world applications.

Before fitting the model, we ensured that the dataset was cleaned, scaled, and free of multicollinear-
ity to avoid biased coefficients. We then trained the model using the training portion of the data
and evaluated its performance on the test set to assess how well it generalized to unseen data.

[19]: #Seperating the features and target
#Credit Limit is the target
X = df.drop(columns=['CREDIT_LIMIT'])
y = df['CREDIT_LIMIT']

[20]: #Regression Model requires scaling so it isn't biased towards higher populated␣
↪values

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

[21]: #Train-Test the model: 20% goes to testing 80% to Training
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2,␣

↪random_state=42)

[22]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
#Train the model
model = LinearRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

r2 = r2_score(y_test, y_pred)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
mae = mean_absolute_error(y_test, y_pred)
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[23]: #These are the results of the regression miodel
print("R² Score:", r2)
print("RMSE:", rmse)
print("MAE:", mae)

R² Score: 0.2278583048872791
RMSE: 3099.2032944635534
MAE: 1586.9226950866737

The linear regression model provided a decent starting point for predicting credit limits based on
user behavior, but its performance was limited. With an R² score of 0.23, the model was only
able to explain about 23 percent of the variation in credit limits across the dataset. The root
mean squared error (RMSE) was approximately 3,099 USD, and the mean absolute error (MAE)
came out to 1,587 USD. This indicates that while the model performed reasonably well around
average values, it struggled to accurately predict very high or very low credit limits. Overall, the
linear model served as a useful baseline, but the results suggest that a more flexible and non-linear
approach, such as a Random Forest Regressor, would likely capture the complexity of the data
more effectively.

2.1.1 Evaluating Linear Regression Through Visualizations

[26]: feature_names = X.columns
coefficients = pd.Series(model.coef_, index=feature_names)

coefficients_sorted = coefficients.sort_values()

plt.figure(figsize=(10, 6))
coefficients_sorted.plot(kind='barh', color='skyblue')
plt.title('Linear Regression Coefficients - Feature Impact on Credit Limit')
plt.xlabel('Coefficient Value')
plt.ylabel('Feature')
plt.grid(True)
plt.tight_layout()
plt.show()
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[27]: #Created a DataFrame to compare actual vs predicted credit limits
results_df = pd.DataFrame({

'Actual Credit Limit': y_test.values,
'Predicted Credit Limit': y_pred

})

#Display the first 10 predictions
results_df.head(10)

[27]: Actual Credit Limit Predicted Credit Limit
0 3500.0 4004.725837
1 500.0 4337.370229
2 5000.0 4765.684602
3 3500.0 4267.392906
4 6500.0 5158.541886
5 1500.0 3473.968114
6 4500.0 7257.087512
7 10000.0 5369.175452
8 3000.0 5728.195681
9 10000.0 8122.436697

[28]: #Scatter Plot to show results
import matplotlib.pyplot as plt

plt.scatter(y_test, y_pred, alpha=0.5)
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plt.xlabel('Actual Credit Limit')
plt.ylabel('Predicted Credit Limit')
plt.title('Predicted vs Actual Credit Limits')
plt.grid(True)
plt.show()

To better understand the performance and behavior of our linear regression model, we used
a combination of coefficient analysis, tabular comparison, and visual plots. The coefficient
plot revealed which features most influenced the predicted credit limit, with BALANCE, ONE-
OFF_PURCHASES, and INSTALLMENTS_PURCHASES having strong positive effects, while
features like BALANCE_TO_LIMIT and CASH_ADVANCE had negative impacts, suggesting
financial risk. To validate how these coefficients translated into predictions, we created a table
comparing actual and predicted credit limits for several users. This gave us a sense of how close
the model came to reality on a case-by-case basis. Finally, we used a scatter plot to visualize
model accuracy across the test set. While the plot showed a general correlation between predicted
and actual values, many points strayed from the ideal y = x line, especially for extreme values.
Together, these tools confirmed that while the model captured general trends, it lacked precision
for users with very high or very low credit limits.
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2.2 Random Forest Regressor
After testing a linear regression model, we turned to a more advanced machine learning technique
to improve accuracy and better capture the complexity of financial behavior. We chose the Random
Forest Regressor, a type of ensemble model that builds multiple decision trees and aggregates their
predictions to produce a final result. Unlike linear models, which assume straight-line relationships
between features and the target, Random Forests are capable of learning non-linear interactions
and handling a wide range of data distributions without requiring strong assumptions about the
underlying structure. This makes them especially useful in financial applications, where user be-
havior can be unpredictable and influenced by many overlapping factors. In this project, we used
Random Forest to predict a user’s credit limit based on their past behavior. We expected this model
to outperform linear regression by capturing more nuanced patterns across features like spending
habits, payment consistency, credit utilization, and cash advance frequency.

[31]: from sklearn.ensemble import RandomForestRegressor # Import the␣
↪RandomForestRegressor class

rf_model = RandomForestRegressor(random_state=42) # Changed to Regressor
rf_model.fit(X_train, y_train)
y_pred_rf = rf_model.predict(X_test)

# Evaluate the model
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
r2_rf = r2_score(y_test, y_pred_rf)
rmse_rf = np.sqrt(mean_squared_error(y_test, y_pred_rf))
mae_rf = mean_absolute_error(y_test, y_pred_rf)

print("Random Forest - R² Score:", r2_rf)
print("Random Forest - RMSE:", rmse_rf)
print("Random Forest - MAE:", mae_rf)

Random Forest - R² Score: 0.973429934404544
Random Forest - RMSE: 574.9073698419626
Random Forest - MAE: 203.0321784889665

The Random Forest Regressor significantly outperformed our linear model in predicting credit lim-
its. It achieved an R² score of approximately 0.96, meaning it was able to explain 96 percent of the
variance in the target variable. This is a major improvement over the linear regression model, which
only explained about 23 percent. The root mean squared error (RMSE) dropped to around $690,
and the mean absolute error (MAE) was just under $250. These metrics show that the Random
Forest model made much more precise predictions across the board. The improvement suggests that
capturing non-linear patterns and feature interactions is critical when modeling financial behavior,
and that Random Forest is far better equipped to do so than a simple linear approach.
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2.2.1 Evaluating Random Forest Regressor Through Visualizations

[34]: results_rf = pd.DataFrame({
'Actual Credit Limit': y_test.values,
'Predicted Credit Limit (RF)': y_pred_rf

}).round(2)

results_rf.head(10)

[34]: Actual Credit Limit Predicted Credit Limit (RF)
0 3500.0 3583.5
1 500.0 551.5
2 5000.0 5417.5
3 3500.0 3476.0
4 6500.0 6339.0
5 1500.0 2530.0
6 4500.0 4685.5
7 10000.0 9250.0
8 3000.0 3962.0
9 10000.0 10237.0

[35]: plt.figure(figsize=(8,6))
plt.scatter(y_test, y_pred_rf, alpha=0.5, color='forestgreen')
plt.xlabel('Actual Credit Limit')
plt.ylabel('Predicted Credit Limit (Random Forest)')
plt.title('Random Forest: Predicted vs Actual Credit Limits')
plt.grid(True)
plt.show()

12



To visualize the performance of our Random Forest Regressor, we created a side-by-side comparison
of actual and predicted credit limits, along with a scatter plot of all predictions. The table highlights
that the model is consistently close to the true values, often within a few hundred dollars, which
reflects the low MAE we observed earlier. The scatter plot reinforces this, showing a tight clustering
of points along the ideal y = x line, especially in the mid-range of credit limits. This strong
alignment indicates high prediction accuracy and minimal variance across most cases. Compared
to the linear model, the Random Forest produced much more reliable predictions, with less scatter
and fewer outliers. These visualizations support the quantitative metrics and confirm that the
model captures both average and extreme credit behaviors far more effectively.

3 Clustering - K-Means
Clustering is a powerful unsupervised learning technique used to group similar data points based
on shared characteristics. In this project, we used K-Means clustering to segment credit card users
based on behavioral and financial features. Our goal was to identify meaningful user groups that
reflect different usage patterns, such as spending behavior, cash advance reliance, and payment
consistency. Understanding these patterns can help financial institutions better target users for
offers, credit decisions, and risk management strategies.

We selected K-Means due to its scalability and effectiveness when working with continuous numer-
ical data. The algorithm works by assigning users to clusters that minimize the distance between
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each point and its cluster center. To determine the optimal number of clusters, we tested values
of k from 2 to 10 and evaluated performance using both inertia (elbow method) and silhouette
scores. This approach allowed us to identify the most natural groupings within the data, setting
the foundation for our segmentation analysis.

[38]: # we've already scaled so we won't do that
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score

inertias, silhouettes = [], []
K = range(2, 11)
for k in K:

km = KMeans(n_clusters=k, random_state=42)
labels = km.fit_predict(X_scaled)
inertias.append(km.inertia_)
silhouettes.append(silhouette_score(X_scaled, labels))

# plot inertia and silhouette vs. k
plt.plot(K, inertias, marker='o')
plt.title('Elbow Method')
plt.xlabel('k'); plt.ylabel('Inertia'); plt.show()
print() ## blank line
plt.plot(K, silhouettes, marker='o')
plt.title('Silhouette Score')
plt.xlabel('k'); plt.ylabel('Silhouette'); plt.show()
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3.1 Methodology
To build the clustering model, we selected eight key features that represent core aspects of user be-
havior: BALANCE, PURCHASES, ONEOFF_PURCHASES, INSTALLMENTS_PURCHASES,
CASH_ADVANCE, CREDIT_LIMIT, PAYMENTS, and MINIMUM_PAYMENTS. These fea-
tures were chosen to capture how users spend, borrow, and repay on their credit cards. Since
K-Means is sensitive to the scale of input data, we standardized all features using StandardScaler
to ensure they contributed equally to the clustering process. We ran K-Means clustering for values
of k ranging from 2 to 10 and evaluated the results using both inertia (for the elbow method) and
silhouette score. The highest silhouette score occurred at k = 9, so we selected that as the optimal
number of clusters. Each user was then assigned a cluster label, which we used to create behavioral
segments and interpret differences across groups.

[40]: ## I chose 9 because the silhouette score was the highest at 9 clusters

features = [
'BALANCE', 'PURCHASES', 'ONEOFF_PURCHASES', 'INSTALLMENTS_PURCHASES',
'CASH_ADVANCE', 'CREDIT_LIMIT', 'PAYMENTS', 'MINIMUM_PAYMENTS'

]
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X = df[features]

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

best_k = 9
kmeans = KMeans(n_clusters=best_k, random_state=42)
labels = kmeans.fit_predict(X_scaled)
df['segment'] = labels

print(f"Silhouette score (k={best_k}):",
silhouette_score(X_scaled, labels))

centroids = scaler.inverse_transform(kmeans.cluster_centers_)
centroids_df = pd.DataFrame(centroids, columns=features)
print("\nCluster centroids (in original units):")
print(centroids_df)

Silhouette score (k=9): 0.32832712780219064

Cluster centroids (in original units):
BALANCE PURCHASES ONEOFF_PURCHASES INSTALLMENTS_PURCHASES \

0 7062.425917 910.646091 561.522063 349.256865
1 670.584861 413.667885 205.015373 208.982204
2 5601.644631 28394.162273 22858.457273 5535.705000
3 2927.679965 345.369728 208.431931 136.965617
4 3828.778069 707.769600 109.048200 598.721400
5 2138.492178 5646.271402 4485.149623 1161.121779
6 5021.416832 1140.944103 765.493248 375.638889
7 864.113280 1511.539671 782.250012 729.497081
8 4519.539736 8405.431628 2614.989884 5797.418488

CASH_ADVANCE CREDIT_LIMIT PAYMENTS MINIMUM_PAYMENTS
0 3941.560252 10622.916667 2798.422485 2391.233454
1 317.675065 2184.708111 732.488668 447.966903
2 1014.206401 15886.363636 28136.347604 3474.281626
3 2669.956813 5324.936869 2146.315450 1166.929352
4 900.489373 4075.000000 1239.337553 23882.452451
5 454.601880 7796.630728 5171.650529 855.830025
6 11380.161322 10260.256410 14532.338979 1974.081874
7 144.934594 7375.039839 1743.277373 381.874740
8 832.636742 10542.441860 8102.165259 2943.784049

[41]: print(df['segment'].value_counts(normalize=True) * 100)

segment
1 55.246396
7 17.946139
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3 13.934518
0 5.643089
5 4.156889
6 1.307409
8 0.961001
4 0.558722
2 0.245838
Name: proportion, dtype: float64

[42]: # find the tiny segments
prop = df['segment'].value_counts(normalize=True)
outliers = prop[prop < 0.01].index.tolist()

# map them to a new segment code -1
df['segment_clean'] = df['segment'].apply(lambda x: -1 if x in outliers else x)

# check the new proportions
print(df['segment_clean'].value_counts(normalize=True) * 100)

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
pca_result = pca.fit_transform(X_scaled)

plt.figure(figsize=(10, 6))
scatter = plt.scatter(pca_result[:, 0], pca_result[:, 1],␣

↪c=df['segment_clean'], cmap='tab10', alpha=0.6)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('PCA of Credit Card Segments')
plt.grid(True)
plt.colorbar(scatter, label='Segment')
plt.show()

segment_clean
1 55.246396
7 17.946139
3 13.934518
0 5.643089
5 4.156889
-1 1.765560
6 1.307409
Name: proportion, dtype: float64
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3.2 Final Updated Centroids

[44]: print(df['segment_clean'].value_counts(normalize=True) * 100)

features = ['BALANCE', 'PURCHASES', 'ONEOFF_PURCHASES',␣
↪'INSTALLMENTS_PURCHASES',

'CASH_ADVANCE', 'CREDIT_LIMIT', 'PAYMENTS', 'MINIMUM_PAYMENTS']

centroids_clean = df[df['segment_clean'] != -1].
↪groupby('segment_clean')[features].mean()

print("\nUpdated Cluster Centroids (Cleaned Segments Only):")
print(centroids_clean)

segment_clean
1 55.246396
7 17.946139
3 13.934518
0 5.643089
5 4.156889
-1 1.765560
6 1.307409
Name: proportion, dtype: float64
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Updated Cluster Centroids (Cleaned Segments Only):
BALANCE PURCHASES ONEOFF_PURCHASES \

segment_clean
0 7057.022296 909.502396 561.069703
1 670.426928 414.304901 205.236871
3 2927.656714 346.171227 206.547690
5 2138.881624 5638.444785 4477.517151
6 5021.416832 1140.944103 765.493248
7 863.219899 1510.253120 783.494097

INSTALLMENTS_PURCHASES CASH_ADVANCE CREDIT_LIMIT \
segment_clean
0 348.565267 3933.897854 10626.633663
1 209.397522 317.546915 2185.708491
3 139.651379 2670.260880 5311.564725
5 1160.927634 464.949359 7801.209677
6 375.638889 11380.161322 10260.256410
7 726.966961 143.798331 7386.247909

PAYMENTS MINIMUM_PAYMENTS
segment_clean
0 2795.085569 2389.735943
1 732.651011 447.810815
3 2143.069289 1172.628729
5 5179.583121 854.906019
6 14532.338979 1974.081874
7 1743.857351 377.433901

3.3 Explaining Methodology
To improve the clarity of our segmentation and avoid over-interpreting rare user behaviors, we
cleaned up our clusters by identifying extremely small segments. Specifically, we grouped any
cluster representing less than 1 percent of the user base into a single category labeled -1, which we
treated as an outlier class. This step helped us focus on the dominant behavioral patterns in the
dataset while still acknowledging the presence of niche user types. After cleaning, we retained six
core segments that represent over 97 percent of the total population.

3.4 Evaluating Clusters
3.4.1 Cluster Interpretation Summary

SegmentName
Proportion
(%) Description

1 Dormant Users 55.25 Very low balances, purchases, and credit limits; minimal
activity

7 Active Moderate
Users

17.95 Mid-level purchases (around 1.5 K), moderate one-off
spending (around 0.8 K), consistent payments
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SegmentName
Proportion
(%) Description

3 Installment
Buyers

13.93 Moderate overall spending with a focus on installment
transactions and steady repayments

0 Cash Advance
Revolvers

5.64 High balances (around 7 K) and frequent cash advances
(around 3.9 K); often carry a balance

5 Installment
Heavy Spenders

4.16 High total purchases (around 5.6 K) split between one-off
and installment payments

6 Cash Advance
Specialists

1.31 Very large cash advances (around 11 K) with little other
purchase activity

-1 Outliers 1.77 Extreme or irregular patterns such as massive one-off
charges or aggressive overpayments; excluded from main
analysis

After cleaning and relabeling, six core segments emerged plus a small outlier group. Segment 1
(Dormant Users) makes up more than half the dataset and shows minimal balances, purchases, and
credit limits. Segment 7 (Active Moderate Users) represents about 18 percent of customers with
balanced, mid-level spending and reliable repayment behavior. Segment 3 (Installment Buyers)
centers on moderate overall spending but relies heavily on installment transactions with steady
payments. Segment 0 (Cash Advance Revolvers) includes users with high balances and frequent
cash advances, indicating revolving usage. Segment 5 (Installment Heavy Spenders) combines high
total purchase amounts split between one-off and installment payments. Segment 6 (Cash Advance
Specialists) is a small group defined by very large cash advances and limited traditional purchases.
Segment –1 captures outliers with extreme or unpredictable patterns and is excluded from deeper
analysis.

4 Classification - Random Forest Classifier
In this section, we aimed to build a classification model to predict whether a credit card user is
likely to pay off their balance in full. Full payment behavior is an important indicator of financial
responsibility and can be useful in identifying low-risk customers, designing loyalty programs, or
mitigating default risk. To define our target variable, we used the PRC_FULL_PAYMENT feature,
which captures the proportion of the balance paid off by a user. We labeled users as full payers if
this value was greater than 0.8, and as non-full payers otherwise.

We approached this task using a Random Forest Classifier, a robust ensemble learning method that
combines multiple decision trees to improve predictive accuracy. Before training the model, we
scaled our features using standardization to ensure all inputs were on a comparable scale. We then
split the dataset into training and testing subsets to evaluate the model’s performance on unseen
data. Since this was a highly imbalanced classification problem, with only a small percentage of
users consistently paying in full, we expected some trade-offs in model performance across precision,
recall, and F1 score. Our goal was to assess how well the model could identify the minority class
(full payers) despite the imbalance.

[47]: from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score,␣

↪confusion_matrix
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from sklearn.model_selection import train_test_split
import seaborn as sns

df['paid_in_full'] = (df['PRC_FULL_PAYMENT'] > 0.8).astype(int)
X = df.drop(columns=['paid_in_full', 'segment', 'segment_clean',␣

↪'PRC_FULL_PAYMENT'])
y = df['paid_in_full']

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,␣
↪test_size=0.2, random_state=42)

rf_classifier = RandomForestClassifier(random_state=42)
rf_classifier.fit(X_train, y_train)
y_pred = rf_classifier.predict(X_test)

print("Classification Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))

cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=[0,1],␣

↪yticklabels=[0,1])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()

Classification Accuracy: 0.929608938547486

Classification Report:
precision recall f1-score support

0 0.94 0.99 0.96 1646
1 0.64 0.28 0.39 144

accuracy 0.93 1790
macro avg 0.79 0.64 0.68 1790

weighted avg 0.92 0.93 0.92 1790
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4.1 Evaluation
The Random Forest classifier achieved a high overall accuracy of 92.9 percent, correctly classifying
the majority of users. However, a closer look at the confusion matrix and classification report reveals
that this performance is heavily skewed toward the majority class. Out of 1,790 test samples, 1,621
out of 1,646 non-full payers were correctly identified, while only 42 out of 144 full payers were
correctly predicted.

The model achieved a precision of 0.63 for class 1 (users who pay in full), meaning that when it
predicted a user would fully pay their balance, it was correct 63 percent of the time. However, the
recall for this class was just 0.29, indicating that the model only identified 29 percent of all true
full payers. The F1 score for class 1 was 0.40, reflecting the trade-off between its relatively strong
precision and weak recall.

This imbalance in predictive performance suggests that while the model is highly effective at flagging
users who do not pay in full, it struggles to detect those who do. This shortfall is likely due to
the imbalanced nature of the dataset, where full payers make up a small minority. In real-world
applications such as identifying low-risk customers for credit incentives, failing to recognize a large
portion of full payers could significantly reduce the model’s utility.

To improve the model’s performance on the minority class, future iterations could explore resam-
pling techniques, such as oversampling the positive class or using class weights during training to
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penalize misclassifications of full payers more heavily.

5 Summary
This project set out to explore the behaviors of credit card users through both unsupervised and
supervised learning. We began by applying clustering techniques to segment users based on their
financial activity, ultimately identifying six distinct behavioral groups, including dormant users,
installment-heavy spenders, and high-risk cash advance users. These clusters helped us understand
the diversity of financial habits within the dataset and highlighted potential user types that a
financial institution might want to target or monitor differently.

We then built a regression model to predict a user’s credit limit based on spending and repayment
behavior. While the linear regression model provided a basic baseline, its relatively low R² score
suggested that more complex relationships were at play. Switching to a Random Forest Regres-
sor drastically improved performance, capturing over 96 percent of the variance in credit limit
predictions. This confirmed that nonlinear methods better capture the relationships in user data.

Finally, we explored classification by predicting whether a user was likely to pay off their balance
in full. While our Random Forest model reached high overall accuracy, it struggled to identify full
payers due to class imbalance. Despite this, the classification task demonstrated how behavioral
features can be used to predict meaningful financial actions.

Overall, this project deepened our understanding of how to analyze and model financial behavior
using real-world data. It also showed us the importance of model selection, feature interpretation,
and the challenges that arise when working with imbalanced outcomes. Going forward, we would
look to improve classification performance by applying resampling strategies, engineering additional
features, or exploring other algorithms that handle imbalance more effectively.

5.1 Impact
This project presents several meaningful opportunities for both financial institutions and consumers,
while also raising important ethical considerations. On the positive side, clustering allowed us to
uncover distinct behavioral segments among credit card users. These segments, such as dormant
users, installment-heavy spenders, and cash advance users, can help banks create more personalized
strategies. Instead of treating every customer the same, financial institutions can tailor commu-
nication, credit products, and rewards based on actual user behavior. This has the potential to
improve customer satisfaction, loyalty, and overall financial engagement.

The regression models also added value by predicting credit limits based on user behavior. The
Random Forest Regressor, in particular, captured complex patterns in the data and provided strong
predictive accuracy. For banks, this means smarter and more responsible credit limit assignments.
For users, it increases transparency by helping them understand what behaviors may lead to higher
credit availability and trust from lenders.

The classification model introduced a practical use case by predicting whether a user would pay
off their balance in full. Identifying full payers can help institutions reward low-risk customers or
adjust credit policies accordingly. However, the model faced significant limitations due to class
imbalance. Although it performed well in accuracy overall, it failed to correctly identify most of
the full payers, which could lead to unfair outcomes if used without further refinement.
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There are also broader ethical risks. Models trained on historical data can unintentionally reinforce
existing disparities. Users from underrepresented or disadvantaged backgrounds may be clustered
into high-risk groups or misclassified based on structural inequalities rather than actual behavior. If
these models are used without transparency or fairness checks, they could deepen the very financial
divides they are meant to help address.

To minimize harm and maximize impact, these models should be deployed with human oversight,
continuous evaluation, and a strong commitment to equity. When used responsibly, machine learn-
ing can improve financial decision-making for everyone involved. When misused, it can quietly
perpetuate bias and exclusion.

5.2 References
Bhasin, Arjun. “Credit Card Dataset for Clustering.” Www.kaggle.com, 2019,
www.kaggle.com/datasets/arjunbhasin2013/ccdata.
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